Next Investors logo grey

Next-gen solar cells spin in new direction

Published 20-JUN-2019 14:41 P.M.

|

3 minute read

Hey! Looks like you have stumbled on the section of our website where we have archived articles from our old business model.

In 2019 the original founding team returned to run Next Investors, we changed our business model to only write about stocks we carefully research and are invested in for the long term.

The below articles were written under our previous business model. We have kept these articles online here for your reference.

Our new mission is to build a high performing ASX micro cap investment portfolio and share our research, analysis and investment strategy with our readers.


Click Here to View Latest Articles

A new nanomaterial made from phosphorus, known as phosphorene, is shaping up as a key ingredient for more sustainable and efficient next-generation perovskite solar cells (PSCs).

PSCs which are one of the fastest developing new solar technologies and can achieve efficiencies comparable to more commonly used commercially available silicon solar cells.

For the first time, an international team of clean chemistry researchers led by Professor Joseph Shapter and Flinders University, has made very thin phosphorene nanosheets for low-temperature PSCs using the rapid shear stress of the University’s revolutionary vortex fluidic device (VFD).

“Silicon is currently the standard for rooftop solar, and other solar panels, but they take a lot of energy to produce them. They are not as sustainable as these newer options,” says adjunct Professor Shapter, now at University of Queensland.

“Phosphorene is an exciting material because it is a good conductor that will absorb visible light. In the past most non-metallic materials would have one property but not both,” he says.

“We’ve found an exciting new way to convert exfoliated black phosphorus into phosphorene which can help produce more efficient and also potentially cheaper solar cells,” says Dr Christopher Gibson, from the College of Science and Engineering at Flinders University.

“Our latest experiments have improved the potential of phosphene in solar cells, showing an extra efficiency of 2%-3% in electricity production.”

Dr Christopher Gibson, from Flinders University.

Research into making high quality 2D phosphorene in large quantities – along with other future materials such as graphene – are paving the way to more efficient and sustainable production with the use of the SA-made VFD, near-infrared laser light pulses, and even an industrial-scale microwave oven.

The work with phosphorene is exploring the addition of different atoms to the matrix which is showing very promising results in catalysis, particularly in the area of water splitting to produce hydrogen and oxygen.

With the ability to artificially produce perovskite structures, commercial viability is at the threshold and not too far away once the cells can be successfully scaled up. Meanwhile research around the world continues to look for ways to improve and optimise perovskite cell performance.

Professor of Clean Technology Colin Raston, Dr Kasturi Vimalanathan and Dr Gibson are among a team of Flinders Institute for Nanoscale Science and Technology researchers looking to improve solar cell efficiency with new and improved solar cell materials and processing systems.

Professor Shaper also is continuing the pioneering solar-cell research at the UQ with Dr Munkhbayar Batmunkh and Abdulaziz Bati, all co-authors of the new paper ‘Efficient Production of Phosphorene Nanosheets via Shear Stress Mediated Exfoliation for Low-Temperature Perovskite Solar Cells.

The new paper by M Batmunkh, K Vimalanathan, C Wu, ASR Bati, L Yu, SA Tawfik, MJ Ford, TJ Macdonald, CL Raston, S Priya, CT Gibson and JG Shapter (University of Queensland, Pennsylvania State University, Virginia Tech, UTS, RMIT, UCL and Flinders University) has been published in Small Methods (Wiley) DOI: 10.1002/smtd.201800521.

The latest study was supported by an Australian Research Council Discovery Program, Royal Society of Chemistry research grants, Microscopy Australia, Australian National Fabrication Facility and the new Flinders Microscopy and Microanalysis Centre.



General Information Only

S3 Consortium Pty Ltd (S3, ‘we’, ‘us’, ‘our’) (CAR No. 433913) is a corporate authorised representative of LeMessurier Securities Pty Ltd (AFSL No. 296877). The information contained in this article is general information and is for informational purposes only. Any advice is general advice only. Any advice contained in this article does not constitute personal advice and S3 has not taken into consideration your personal objectives, financial situation or needs. Please seek your own independent professional advice before making any financial investment decision. Those persons acting upon information contained in this article do so entirely at their own risk.

Conflicts of Interest Notice

S3 and its associated entities may hold investments in companies featured in its articles, including through being paid in the securities of the companies we provide commentary on. We disclose the securities held in relation to a particular company that we provide commentary on. Refer to our Disclosure Policy for information on our self-imposed trading blackouts, hold conditions and de-risking (sell conditions) which seek to mitigate against any potential conflicts of interest.

Publication Notice and Disclaimer

The information contained in this article is current as at the publication date. At the time of publishing, the information contained in this article is based on sources which are available in the public domain that we consider to be reliable, and our own analysis of those sources. The views of the author may not reflect the views of the AFSL holder. Any decision by you to purchase securities in the companies featured in this article should be done so after you have sought your own independent professional advice regarding this information and made your own inquiries as to the validity of any information in this article.

Any forward-looking statements contained in this article are not guarantees or predictions of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results or performance of companies featured to differ materially from those expressed in the statements contained in this article. S3 cannot and does not give any assurance that the results or performance expressed or implied by any forward-looking statements contained in this article will actually occur and readers are cautioned not to put undue reliance on forward-looking statements.

This article may include references to our past investing performance. Past performance is not a reliable indicator of our future investing performance.