Next Investors logo grey

Is a 20 per cent reduction in CO2 emissions in oil refinement possible?

Published 10-FEB-2020 10:29 A.M.

|

2 minute read

Hey! Looks like you have stumbled on the section of our website where we have archived articles from our old business model.

In 2019 the original founding team returned to run Next Investors, we changed our business model to only write about stocks we carefully research and are invested in for the long term.

The below articles were written under our previous business model. We have kept these articles online here for your reference.

Our new mission is to build a high performing ASX micro cap investment portfolio and share our research, analysis and investment strategy with our readers.


Click Here to View Latest Articles

How do we make the fossil fuel industry greener and cleaner?

In a world first, a team of researchers at the University of Sydney led by Associate Professor Jun Huang, have produced a new amorphous silica-alumina catalyst with stronger acidity than any other silica-alumina material created before.

Silica-alumina materials are among the most common solid acids that have been widely commercialised as efficient and environmentally-friendly catalysts in the petrochemical and bio-refinery industries.

“This new catalyst can significantly reduce the amount of CO2 emitted by oil refineries, which has the potential to make the fossil fuel industry much greener and cleaner,” Associate Professor Huang from the Faculty of Engineering and Sydney Nano Institute said.

A significant amount of carbon is emitted during the refinement of crude oil to produce products like petroleum, gasoline and diesel. Estimates suggest 20 to 30 percent of crude oil is transferred to waste and further burnt in the chemical process, making oil refineries the second largest source of greenhouse gases behind power plants.

Silica-aluminas with strong Brønsted acidity – a substance that gives up or donates hydrogen ions (protons) in a chemical reaction – are becoming increasingly important to various sustainability processes, including the fields of biomass conversion, CO2 capture and conversion, air-pollution remediation, and water purification.

“Renewable energy is important to achieving a more sustainable energy supply, but the reality is that we will still be reliant on fossil fuels in the foreseeable future. Therefore, we should do all we can to make this industry more efficient and reduce its carbon footprint while we transition to renewable energy sources," Professor Huang said.

“This new catalyst offers some exciting prospects, if it were to be adopted by the entire oil refinery industry, we could potentially see a reduction of over 20 per cent in CO2 emissions during the oil refinement process. That’s the equivalent of double Australia’s crude oil consumption, over 2 million barrels of oil per day.”

“The new catalyst also has the potential to develop the biomass industry. We can now look to biomass material like algae to be part of sustainable energy solutions.”

The next steps for the researchers are to work on manufacturing the new catalyst at a large, industrial scale.

This research was a collaboration between University Lille (France), the Centre national de la recherche scientifique (France), ETH Zurich (Switzerland), Ruhr-Universität Bochum (Germany) and Macquarie University (Australia).



General Information Only

S3 Consortium Pty Ltd (S3, ‘we’, ‘us’, ‘our’) (CAR No. 433913) is a corporate authorised representative of LeMessurier Securities Pty Ltd (AFSL No. 296877). The information contained in this article is general information and is for informational purposes only. Any advice is general advice only. Any advice contained in this article does not constitute personal advice and S3 has not taken into consideration your personal objectives, financial situation or needs. Please seek your own independent professional advice before making any financial investment decision. Those persons acting upon information contained in this article do so entirely at their own risk.

Conflicts of Interest Notice

S3 and its associated entities may hold investments in companies featured in its articles, including through being paid in the securities of the companies we provide commentary on. We disclose the securities held in relation to a particular company that we provide commentary on. Refer to our Disclosure Policy for information on our self-imposed trading blackouts, hold conditions and de-risking (sell conditions) which seek to mitigate against any potential conflicts of interest.

Publication Notice and Disclaimer

The information contained in this article is current as at the publication date. At the time of publishing, the information contained in this article is based on sources which are available in the public domain that we consider to be reliable, and our own analysis of those sources. The views of the author may not reflect the views of the AFSL holder. Any decision by you to purchase securities in the companies featured in this article should be done so after you have sought your own independent professional advice regarding this information and made your own inquiries as to the validity of any information in this article.

Any forward-looking statements contained in this article are not guarantees or predictions of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results or performance of companies featured to differ materially from those expressed in the statements contained in this article. S3 cannot and does not give any assurance that the results or performance expressed or implied by any forward-looking statements contained in this article will actually occur and readers are cautioned not to put undue reliance on forward-looking statements.

This article may include references to our past investing performance. Past performance is not a reliable indicator of our future investing performance.